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Abstract 

We investigate a method for combining two dispersed-dot 
halftoning masks for two colors that generalizes the 
traditional angular displacement used with clustered-dot 
halftone screens. 

Our masks were two variations of the Linear Pixel 
Shuffling algebraic mask algorithm involving numbers 
arising from two different third order, Fibonacci-like 
recurrences, As an alternative to screen rotation, these 
masks were repositioned by flipping and rotating, and all 
pairwise positional combinations of the transposed, inverted 
masks were used two at a time to generate cyan and 
magenta images, each at nominal dot fractions of 0.25. The 
resulting blue images were evaluated for color uniformity 
and moire using visual evaluations, Fourier analysis, and a 
color micro-variation analysis. This presentation will 
describe the analytical techniques used to evaluate color 
uniformity and moire. 

1. Background: 
Dispersed Dot Halftoning Masks 

The halftone mask method to convert a gray-scale image, I, 
to a bi-level image, B, employs a mask, M, as follows. 
Given a gray-scale image, I, of dimension H x W, we can 
use a mask M, of the same dimensions to convert I to a 
similar looking bi-level image B by the following rule: 

1, if I ≥ Mpq pq
Bpq = 

0, if I pq < Mpq 

(1) 

In this form, we assume that the values of the image 
and of the mask are in the same range, typically 0–255 or 
0.0–1.0. M can be constructed many ways. Roberts’s 
methods simply uses pseudorandom numbers (white noise) 
and produces barely acceptable, mottled, bi-level images. B. 
Bayer introduced a method of constructing M in terms of 

3replicated sub-windows or tiles. R. Ulichney presents a 
4wide variety of methods for constructing such tiles. 

We previously presented methods for creating masks 
1,2based on third-order linear recurrences, which we briefly 

review here. Two useful recurrences are the sequences 
referred to as G and T given by 

G
0 = 0, G

1 = G2 = 1 (2) 

G = Gn-1 + Gn-3 for n > 2 (3)n 

T
0 = 0, T

1 = T2 = 1 (4) 

T = Tn-1 + Tn-2 + Tn-3 for n  >  2  (5)n 

T is known as the Tribonacci sequence, a generalization of 
the Fibonacci sequence. Let 

A = Sn, B = Sn+1, C = Sn+2  (6) 

where {Sn} is either of our sequences. Define a mask, M by 
the rule 

Mpq = (pA + qB)%C (7) 

0 9 5 1 10 6 2 11 7 3 12 8 4 
6 2 11 7 3 12 8 4 0 9 5 1 10 

12 8 4 0 9 5 1 10 6 2 11 7 3 
5 1 10 6 2 11 7 3 12 8 4 0 9 

11 7 3 12 8 4 0 9 5 1 10 6 2 
4 0 9 5 1 10 6 2 11 7 3 12 8 

10 6 2 11 7 3 12 8 4 0 9 5 1 
3 12 8 4 0 9 5 1 10 6 2 11 7 
9 5 1 10 6 2 11 7 3 12 8 4 0 
2 11 7 3 12 8 4 0 9 5 1 10 6 
8 4 0 9 5 1 10 6 2 11 7 3 12 
1 10 6 2 11 7 3 12 8 4 0 9 5 
7 3 12 8 4 0 9 5 1 10 6 2 11 

Figure 1. A tile of an algebraic mask for halftone mask with 
parameters A = 6, B = 9, C = 13. 

This defines a mask with valued periodic in p and q 
with period C in both cases—that is a C x C tile—with the 
values {0, 1, …,C  1} each appearing C times in the tile. 
The latter observation is a consequence of 

gcd (Sn, Sn+1, Sn+2) =1  (8) 
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for both our sequences. Figure 1 shows the tile for A = 6, B 
= 9, C =13. These masks are particularly convenient to use 
because each value can be computed from the value to its 
left or above it by an addition followed by a conditional 
subtraction—the table does not need to be stored. Figure 2 
shows a gray-scale image rendered using the Tribonacci 
parameters A = 81, B = 149, C = 274. 

3. Experiments With Pairs of Algebraic Masks 

Instead of rotating a mask relative to itself to apply to the 
various color planes, we create different masks by the 
operations of reflection and 90o rotations, that is, the eight 
symmetries of a square. 

The eight symmetries of the masks are indicated by 
Table 1. For the T0 mask, we used the parameters A = 274, B 
= 504, C = 927. For the G0 mask, we used the parameters A 
= 595, B = 872, C = 1278. 

Table 1. Nomenclature for the Symmetries of the G 

Masks 
G0 G mask in standard position 
G1 G0 rotated 90o counter-clockwise 
G2 G0 rotated 180o counter-clockwise 
G3 G0 rotated 270o counter-clockwise 
G4 G0 flipped top to bottom 
G5 G4 rotated 90o counter-clockwise 
G6 G4 rotated 180o counter-clockwise 
G7 G4 rotated 270o counter-clockwise 

Figure 2. Image halftoned using the mask with the Tribonacci 
parameters A = 81, B = 149, C = 274.. This image is printed with 
“fat pixels” to show the dot patterns used and to avoid artifacts 
introduced by printing. 

2. The Problem: 
Masks For Multiple Color Planes 

Traditional printing uses clustered dots and rotates the 
masks for the different colors through angles relative to 
each other. This rotation avoids moire that might be 
introduced by a small misregistration of the color planes in 
the printed image or though a high correlation of the color 
levels in different planes. This rotation also achieves an 
independence of the printing of two colors, A and B, relative 
to each other. The area fraction of dots of color A that are 
painted over by ink of color B is simply the total area 
fraction of color B by itself. This avoids inadvertent color 
shifting that would occur from the two extreme situations: 
either printing color B totally on top of color A, or of color 
A completely missing color B areas. 

How can we generalize algebraic masks to color 
printing to achieve what traditional printers achieve with 
rotated clustered dots patterns? 

Figure 3. The dispersed dot pattern of a 25% gray image 
halftoned using the mask with the Tribonacci parameters A = 81, 
B = 149, C = 274. 

We created images with color 25% cyan and 25% 
magenta using 7+7+8 = 22 pairs of masks, as follows: 

G0,G1 ,�, G0,G7 

T0,T1 ,�, T0,T7 

G0,T0 ,�, G0,T7 

The pair M, M'  would create the image of 25% cyan 
quantized using mask M and 25% magenta quantized using 
mask M’. We did not use any mask combined with itself for 
the reasons discussed above. 
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The 22 generated color images were evaluated with 
three methods: 
1. Visual assessment of color uniformity. 
2. Frequency composition (Fourier) analysis. 
3. 	 Box analysis to study the variation of the image in 

sampled sub-windows. 

We used J programming language to generate the 
images. The results are summarized in Table 2. 

3.1. Visual Assessment 
Blue halftone images were simulated on a color CRT 

monitor by using cyan masks to control the red phosphors 
and magenta masks to control the green phosphors. The 
blue was always at 100% output. The simulated halftone 
dots were constructed as 1 mm. x 1 mm. dots. With a 
monitor screen resolution of six RGB dots per millimeter, 
the simulated halftone dots contained approximately 36 
phosphor dots. Halftone dots representing cyan ink were 
displayed with the blue and green phosphors at 100% output 
and the red phosphor at 0% output. Similarly, the magenta 
halftone dots used red and blue phosphors with the green 
turned off, and blue halftone dots were formed with the blue 
phosphor only. A simulated blue halftone was generated in 
this way for each of the 22 combinations of masks described 
above. 

The relative spatial uniformity of the simulated blue 
halftones were evaluated visually. Each blue halftone was 
displayed individually on the monitor. The authors could 
easily see the individual 1 mm. x 1 mm. dots of cyan, 
magenta, blue, and white at a viewing distance of 0.5 meter. 
The authors backed up to increase the viewing distance until 
the individual colors blended to a spatially uniform blue. 
The relative quality of the different mask combinations was 
used as the metric of relative color uniformity. The results 
are shown in the second column of Table 2. 

3.2. Fourier Analysis 
A noise power analysis was also applied to the blue 

halftone images as a means of estimating the relative spatial 
uniformity of the 22mask combinations. In this case the 
simulated halftone image was constructed within the 
computer by defining reflection spectra for the virtual paper 
(R = 1.00 for 400–700 nm); for the virtual cyan ink (R = p c 

0.00 for 600–700 nm and 1.00 elsewhere); and for the 
virtual magenta ink (R = 0.004 for 500–600 nm and 1.00 m 

elsewhere). The reflectance of the overlap blue was defined 
as 1.00 from 500 to 700 nm, and zero elsewhere. Each of 
the 22 mask combinations produced an array of colored dots 
of cyan, magenta, blue, and white. 

The L*a*b* value for each pixel was calculated from 
the defined reflection spectrum of each pixel. The average 
reflectance spectrum for the image was calculated and the 
corresponding L*a*b* for the overall image determined. A 
color difference, ∆E, between the halftone dot and the 
overall image was calculated for each individual dot. The 
resulting matrix of ∆E values was a spatial distribution of 
color variation for the blue halftone. A variation matrix of 

this kind was determined for each of the 22 mask 
combinations, and 2D noise power spectra were calculated 
for each. Visual examination of the noise power spectra did 
not suggest a useful metric for comparison of relative color 
uniformity, but they did reveal more complex behavioral 
differences that will be basis for follow up analysis. 

3.3. Box Analysis 
This analysis of color uniformity was carried out in the 

spatial domain of the virtual color images described in part 
3.2 above. An N x N aperture box was defined where N is 
the number of virtual halftone dots. The box was placed in 
the upper left hand corner of the virtual halftone, and 
additional boxes were placed in sequence to tile over the 
entire image. Within each box the average reflectance 
spectrum and the corresponding L*a*b* value was found. 
Then the standard deviation for each color coordinate was 
calculated, σL, σ a, and σb, and the overall RMS color 
deviation for the image was determined: 

σE = (σ2 
a + σ2 

b )1 / 2 
(9) 

The value of N was then increased and the analysis 
repeated to generate another value of σE. As anticipated, σE 

decreased as the aperture box size, N, increased. It was 
observed that σE  increased linearly with 1/N, and the 
following metrics of color variation were defined from these 
graphs. These three metrics of color variation are defined as 
follows, and their values for each of the 22 mask 
combinations are shown in Table 2. 
(a) N5 is the value of N for σE = 5. This corresponds to a 

color difference, σE, of 5, which is noticeable by most 
people but small. A value of 5 was used for comparison 
of the 22 mask combinations rather than the 
approximate JND of 1.0 because many of the mask 
combinations did not achieve σE = 1. 

(b) Nmin is the value of N at which σE = 0. Several mask 
combinations did not show a zero color deviation even 
as the box size went to infinity (1/N = 0). 

(c) σEmin is the value of σE at 1/N = 0. This was included 
since even if a system did not have an Nmin, it would 
always have a minimum σE. 

4. Observations and Conclusions 

Examination of the four color uniformity metrics in Table 2 
shows significant differences between the 22 mask com
binations. Contrary to our initial expectations, there was 
very little correlation between the different metrics in Table 
2. However, further consideration suggests this should not 
be surprising, as outlined below. 

First, the visual distance metric, Dist., in column 2 of 
Table 2, varied only slightly among the 22 mask com
binations, but the calculated metrics in columns 3, 4, and 5 
varied much more. The box metrics, N5 and Nmin were 
specifically designed to mimic the visual distance metric. 
However, the spectrum of phosphors on the CRT monitor 
are quite different from the idealized spectra of the virtual 
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halftones on which the box metrics are based. In addition, 
the monitor resolution may tend to low-pass the simulated 
displayed halftone. The overall effect is that visual inspec
tion of a synthetic halftone on a monitor appears not to be a 
very sensitive index of relative color uniformity, at least as 
done in this project. Further work is needed to develop a 
visual evaluation experiment to provide useful insights into 
the visual significance of color uniformity associated with 
different color halftone algorithms. 

Table 2. Metrics for the cyan and magenta images 
generated from mask pairs. 

Among the three box metrics of color uniformity, the 
minimum color variation, σmin, appears useful only as an 
index of the worst cases. The most color uniform mask 
combinations all were capable of a zero color variation at 
some box size, N. All of combinations with at least one of Ti 

type mask were capable of σmin = 0, so further analysis was 
limited only to those 15 combinations. 

The N5 and Nmin metrics were intended to be a simula
tion of an ideal visual distance experiment. In both cases, a 
smaller value indicates better color uniformity. However, 
the correlation between these two metrics is very low, and 
indeed the correlation coefficient is negative (r = -0.05) for 
the 15 combinations containing a T mask. Figure 4 shows 
the correlation. The absence of a positive correlation, 
coupled with the apparent bimodal distribution in Figure 4, 

Image Dist. N5 Nmin σEmin 

<G0G1> 15 13.7 1042 0 
<G0G2> 16 19.1 133 0.021 
<G0G3> 16 14.0 ∞ 0.196 
<G0G4> 16 13.9 ∞  0.111 
<G0G5> 17 17.1 102 0 
<G0G6> 15 13.6 ∞  0.017 
<G0G7> 16 18.4 214 0.203 
<G0T0> 15 19.0 70 0 
<G0T1> 14 13.2 98 0 
<G0T2> 14 18.9 113 0 
<G0T3> 16 12.6 132 0 
<G0T4> 15 12.5 100 0 
<G0T5> 14 19.0 84 0 
<G0T6> 15 13.0 104 0 
<G0T7> 15 18.9 131 0 
<T0T1> 16 14.1 133 0 
<T0T2> 15 18.0 103 0 
<T0T3> 16 13.6 165 0 
<T0T4> 16 13.4 251 0 
<T0T5> 15 19.2 64 0 
<T0T6> 16 14.0 177 0 
<T0T7> 14 19.3 88 0 

suggests that a single color uniformity metric is insufficient 
to characterize the relative quality of spatial variations in 
color of the mask combinations. 

This work has not resulted in a clear preference for a 
single number metric for comparison of color uniformity of 
different types of halftone algorithms. There may indeed be 
a single number metric, defined to correlate highly with 
appropriate visual preference experiments, but such a metric 
is clearly not a trivial matter to define. Nor is it trivial to 
define an appropriate experimental protocol for visual 
assessment of color uniformity capabilities of halftone 
algorithms. In particular, it is difficult to eliminate all arti
facts associated with monitors. This work does show, how
ever, that different color halftone algorithms do result in 
significant differences in color uniformity. Further work is 
being carried out develop better color halftone algorithms 
and to develop experimental protocols for their evaluation. 

Figure 4. Nmin vs. N5 for all mask combinations containing at 
least one T type mask. 
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